訂閱
糾錯
加入自媒體

谷歌AI負責人Jeff Dean:一文回顧谷歌的2018技術進展

1月15日,谷歌高級研究員、谷歌AI負責人Jeff Dean發(fā)表了博文,回顧總結(jié)了2018年谷歌的技術研究進展。

Jeff Dean從谷歌的人工智能、量子計算、感知技術、算法理論、AutoML、機器人以及TPU等多個技術層面,系統(tǒng)地還原了谷歌AI的2018。

眾所周知,在去年一整年,谷歌遭遇了諸多危機,尤其是不作惡的原則受到內(nèi)外的質(zhì)疑。Jeff Dean博客中首要提到的便是谷歌的道德原則和AI。

道德原則和人工智能

今年,我們發(fā)布了Google AI原則,但是,由于AI的發(fā)展非常迅速,AI原則中諸如“避免制造或加強不公平的偏見”、“對人民負責”等也在不斷變化和改進。

其中,機器學習公平性和模型可解釋性等領域的新研究,正反向推動我們的產(chǎn)品進步,使其更具包容性。例如我們在谷歌翻譯中減少“性別偏見”,并允許探索和發(fā)布更具包容性的圖像數(shù)據(jù)集和模型,使計算機視覺能夠適應全球文化的多樣性。

社會公益

Jeff Dean舉例了AI應用于解決現(xiàn)實公共問題的案例:

洪水預測工作。該研究與Google的許多團隊合作,旨在提供有關洪水發(fā)生可能和范圍的準確細粒度信息,使洪水易發(fā)地區(qū)的人們能夠更好地保護自己及其財產(chǎn)。

地震余震預測的工作。谷歌展示了機器學習(ML)模型可以比傳統(tǒng)的基于物理的模型更準確地預測余震位置。

除此之外,還有許多Google研究人員和工程師合作,使用TensorFlow等開源軟件解決各種科學和社會問題,例如使用卷積神經(jīng)網(wǎng)絡來識別座頭鯨的位置,檢測新的系外行星,識別患病的木薯植物等。

AI輔助技術

為了使ML和計算機科學幫助用戶更快更有效地完成任務,谷歌推出了智能語音技術Google Duplex。

這是一個囊括自然語言研究和對話理解以及文本、語言識別的技術。其核心是一個循環(huán)神經(jīng)網(wǎng)絡,使用的是TensorFlow Extend(TFX)的機器學習平臺構(gòu)建。

當Google Duplex撥打電話時,它的聲音近乎真實的普通人。你可以聽到Google Duplex幫你打電話預約理發(fā)。

其他應用案例還包括Smart Compose,它可以使用預測模型提供有關如何撰寫電子郵件的相關建議,使電子郵件撰寫過程更快更容易的工具。

我們研究的一個重點是讓Google智能助理這樣的產(chǎn)品支持更多語言,并且可以更好地理解語義相似性。

量子計算

在過去的一年里,我們制作了許多令人興奮的量子計算新成果,包括開發(fā)了一種新的72比特通用量子計算設備Bristlecone,該設備可以擴大量子計算機在量子領域可以解決的問題。

我們還發(fā)布了量子計算機的開源編程框架Cirq,并探討了量子計算機如何用于神經(jīng)網(wǎng)絡。最后,我們分享了量子處理器性能波動的經(jīng)驗和技術以及量子計算機如何作為神經(jīng)網(wǎng)絡計算基板的一些想法。

自然語言理解

2018年,Google的自然語言研究在基礎研究和以產(chǎn)品為中心的合作上都取得了非常棒的成果。我們在之前的機器學習模型基礎上開發(fā)了一個新的并行版本的模型 Universal Transformer,它在包括翻譯和語言推理在內(nèi)的許多自然語言任務中都顯示出強大的技術能力。

我們還開發(fā)了BERT,這是第一個深度雙向,無監(jiān)督的自然語言處理模型,僅使用純文本語料庫進行預訓練,就能使用遷移學習對各種自然語言任務進行微調(diào)。

感知

我們的感知研究解決了允許計算機理解圖像,聲音以及為圖像獲取、壓縮、處理,創(chuàng)造性表達和增強現(xiàn)實提供更強大工具的難題。

Google AI使命的一個關鍵是讓其他人能夠從我們的技術中受益,今年我們在改進作為Google API一部分的功能和構(gòu)建塊方面取得了很大進展。比如通過ML Kit 在Cloud ML API和面部相關設備構(gòu)建塊中實現(xiàn)視覺和視頻的改進和新功能。

MobileNetV2是谷歌的下一代移動計算機視覺模型,我們的MobileNets廣泛應用于學術界和工業(yè)界。MorphNet提出了一種有效的方法來學習深層網(wǎng)絡的結(jié)構(gòu),從而在計算資源有限的同時,改進圖像和音頻模型上的性能。

計算攝影

手機拍照性能的提升不僅僅在于物理傳感器的改進,更大部分要歸咎于計算攝影技術的發(fā)展。

我們的計算攝影技術正在與Google的Android和消費者硬件團隊密切合作,將這項研究交付給最新的Pixel和Android手機及其他設備。2014年,我們推出了HDR +,可以在軟件中對齊幀,并將它們與計算軟件結(jié)合,使圖片具有比單次曝光更高的動態(tài)范圍。這是2018年我們能夠在Pixel 2中開發(fā)Motion Photos,以及Motion Stills中開發(fā)增強現(xiàn)實模式的基礎。

今年,我們在計算攝影研究方面的主要工作之一就是創(chuàng)造一種名為Night Sight的新功能,即便在沒有閃光燈的情況下,也能讓Pixel用戶在非;璋档膱鼍爸信某銮逦恼掌。

算法和理論

在過去的一年中,我們的研究涵蓋從理論基礎到應用算法,從圖形挖掘到隱私保護計算等廣泛領域。我們在優(yōu)化方面的工作涉及從研究機器學習的持續(xù)優(yōu)化到分布式組合優(yōu)化的領域。在前一領域,我們研究用于訓練神經(jīng)網(wǎng)絡的隨機優(yōu)化算法的收斂性(其贏得了ICLR 2018最佳論文獎),展示了流行的基于梯度的優(yōu)化方法(例如ADAM的一些變體)的問題,為新的基于梯度的優(yōu)化方法提供了堅實的基礎。

1  2  下一頁>  
聲明: 本文系OFweek根據(jù)授權轉(zhuǎn)載自其它媒體或授權刊載,目的在于信息傳遞,并不代表本站贊同其觀點和對其真實性負責,如有新聞稿件和圖片作品的內(nèi)容、版權以及其它問題的,請聯(lián)系我們。

發(fā)表評論

0條評論,0人參與

請輸入評論內(nèi)容...

請輸入評論/評論長度6~500個字

您提交的評論過于頻繁,請輸入驗證碼繼續(xù)

暫無評論

暫無評論

人工智能 獵頭職位 更多
掃碼關注公眾號
OFweek人工智能網(wǎng)
獲取更多精彩內(nèi)容
文章糾錯
x
*文字標題:
*糾錯內(nèi)容:
聯(lián)系郵箱:
*驗 證 碼:

粵公網(wǎng)安備 44030502002758號